RINCIPLES OF OPERATING SYSTEMS







Application I/O Interface

The OS software interface to the 1/O devices (an API
to the programmer)

Attempts to abstract the characteristics of the many
l/0 devices into a few general classes.

/O “system calls” encapsulate device behaviors in
generic classes

Device-driver layer hides differences among I/O
controllers from kernel
Devices vary in many dimensions
= Character-stream or block
units for data transfer bytes vs blocks
= Sequential or random-access - access methods

= Synchronous (predictable response times) vs
asynchronous (unpredictable response times)

= Sharable or dedicated - implications on deadlock
= Speed of operation - device/software issue
= read-write, read only, or write only - permissions



System calls ==>
... user” API

Example: ioctl(...)
generic call

(roll your own)

iIn UNIX (p. 468),
and other more
specific
commands or calls
open, read, ...

hardware

A Kernel I/O Structure

kernel 1/O subsystem

SCSI
device
driver

keyboard
device
driver

mouse
device
driver

PCI bus
device
driver

floppy
device

driver

ATAPI
device
driver

SCSI
device
controller

keyboard
device
controller

mouse
device
controller

PCI bus
device
controller

floppy
device

controller

ATAPI
device
controller

!

i

!

i

i

!

SCSI
devices

keyboard

PCI bus

floppy-disk
drives

ATAPI
devices
(disks,
tapes,
drives)

Fig.




Characteristics of I/O Devices

Device driver must deal with these at a low level

aspect variation example

data-transfer mode character terminal
block disk

access method sequential modem
random CD-ROM

transfer schedule synchronous tape
asynchronous keyboard

sharing dedicated tape
sharable keyboard

device speed latency Use of 1/0 buffering
seek time

transfer rate
delay between operations

/O direction read only CD-ROM
write only graphics controller
readbwrite disk




Block and Character Devices

m Block devices include disk drives
= example sectors or sector clusters on a disk
= Commands/calls include read, write, seek
= Access is typically through a file-system interface

= Raw I/O or file-system access - “binary xfr” of file data - interpretation
IS in application (personality of file lost)

= Memory-mapped (to VM) file access possible - use memory instructions
rather than 1/O instructions - very efficient (ex: swap space for disk).

= Device driver xfr's blocks at a time - as in paging
= DMA transfer is block oriented
m Character devices include keyboards, mice, serial ports
= Device driver xfr's byte at atime
= Commands include get, put - character at atime
= Libraries layered on top allow line editing - ex: keyboard input
= could be beefed up to use aline at atime (buffering)

B Block & character devices also determine the two general device
driver catagories



Network Devices

m Varying enough from block and character to have own
interface - OS makes network device interface distinct
from disk interface - due to significant differences
between the two

m Unix and Windows NT/91/2000 include socket interface
= Separates network protocol from network operation

= Encapsulates details of various network devices for
application ... analogous to a file and the disk???

= Includes select functionality - used to manage and access
sockets - returns info on packets waiting or ability to accept
packets - avoids polling
B Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes) ... you saw some of these!



Clocks and Timers

B Provide current time, elapsed time, timer

m [f programmable, interval time used for timings, periodic
Interrupts

B 1octl (on UNIX) covers odd aspects of I/0 such as
clocks and timers - a back door for device driver
writers (roll your own). Can implement “secret” calls
which may not be documented in a users or
programming manual



Blocking and Nonblocking I/O

Blocking - process (making the request blocks - lets other process
execute) suspended until I/O completed

= Easy to use and understand

= Insufficient for some needs

= multi-threading - depends on role of OS in thread management

Nonblocking - 1/0 call returns as much as available
= User interface, data copy (buffered 1/0O)
= Implemented via multi-threading

= Returns quickly with count of bytes read or written - ex: read a “small”
portion of a file very quickly, use it, and go back for more, ex:
displaying video “continuously from a disk”

= Asynchronous - process (making the asynch request) runs while I/O
executes

= Difficultto use - can it continue without the results of the I1/0?

= /O subsystem signals process when I/O completed - via interrupt (soft),
or setting of shared variable which is periodically tasted.



