RINCIPLES OF OPERATING SYSTEMS







Application I/O Interface

The OS software interface to the 1/O devices (an API
to the programmer)

Attempts to abstract the characteristics of the many
l/0 devices into a few general classes.

/O “system calls” encapsulate device behaviors in
generic classes

Device-driver layer hides differences among I/O
controllers from kernel
Devices vary in many dimensions
= Character-stream or block
units for data transfer bytes vs blocks
= Sequential or random-access - access methods

= Synchronous (predictable response times) vs
asynchronous (unpredictable response times)

= Sharable or dedicated - implications on deadlock
= Speed of operation - device/software issue
= read-write, read only, or write only - permissions



System calls ==>
... user” API

Example: ioctl(...)
generic call

(roll your own)

iIn UNIX (p. 468),
and other more
specific
commands or calls
open, read, ...

hardware
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Characteristics of I/O Devices

Device driver must deal with these at a low level

aspect variation example

data-transfer mode character terminal
block disk

access method sequential modem
random CD-ROM

transfer schedule synchronous tape
asynchronous keyboard

sharing dedicated tape
sharable keyboard

device speed latency Use of 1/0 buffering
seek time

transfer rate
delay between operations

/O direction read only CD-ROM
write only graphics controller
readbwrite disk




Block and Character Devices

m Block devices include disk drives
= example sectors or sector clusters on a disk
= Commands/calls include read, write, seek
= Access is typically through a file-system interface

= Raw I/O or file-system access - “binary xfr” of file data - interpretation
IS in application (personality of file lost)

= Memory-mapped (to VM) file access possible - use memory instructions
rather than 1/O instructions - very efficient (ex: swap space for disk).

= Device driver xfr's blocks at a time - as in paging
= DMA transfer is block oriented
m Character devices include keyboards, mice, serial ports
= Device driver xfr's byte at atime
= Commands include get, put - character at atime
= Libraries layered on top allow line editing - ex: keyboard input
= could be beefed up to use aline at atime (buffering)

B Block & character devices also determine the two general device
driver catagories



Network Devices

m Varying enough from block and character to have own
interface - OS makes network device interface distinct
from disk interface - due to significant differences
between the two

m Unix and Windows NT/91/2000 include socket interface
= Separates network protocol from network operation

= Encapsulates details of various network devices for
application ... analogous to a file and the disk???

= Includes select functionality - used to manage and access
sockets - returns info on packets waiting or ability to accept
packets - avoids polling
B Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes) ... you saw some of these!



Clocks and Timers

B Provide current time, elapsed time, timer

m [f programmable, interval time used for timings, periodic
Interrupts

B 1octl (on UNIX) covers odd aspects of I/0 such as
clocks and timers - a back door for device driver
writers (roll your own). Can implement “secret” calls
which may not be documented in a users or
programming manual



Blocking and Nonblocking I/O

Blocking - process (making the request blocks - lets other process
execute) suspended until I/O completed

= Easy to use and understand

= Insufficient for some needs

= multi-threading - depends on role of OS in thread management

Nonblocking - 1/0 call returns as much as available
= User interface, data copy (buffered 1/0O)
= Implemented via multi-threading

= Returns quickly with count of bytes read or written - ex: read a “small”
portion of a file very quickly, use it, and go back for more, ex:
displaying video “continuously from a disk”

= Asynchronous - process (making the asynch request) runs while I/O
executes

= Difficultto use - can it continue without the results of the I1/0?

= /O subsystem signals process when I/O completed - via interrupt (soft),
or setting of shared variable which is periodically tasted.



